Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging.

نویسندگان

  • Vinay Parikh
  • William M Howe
  • Ryan M Welchko
  • Sean X Naughton
  • Drew E D'Amore
  • Daniel H Han
  • Monika Deo
  • David L Turner
  • Martin Sarter
چکیده

The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of tropomyosin-related kinase A (trkA) receptors by cholinergic neurons in the nucleus basalis of Meynert/substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. trkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release acetylcholine (ACh). The capacity of cortical synapses to release ACh in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration.

NGF, the principal neurotrophic factor for basal forebrain cholinergic neurons (BFCNs), has been correlated to Alzheimer's disease (AD) because of the selective vulnerability of BFCNs in AD. These correlative links do not substantiate a comprehensive cause-effect mechanism connecting NGF deficit to overall AD neurodegeneration. A demonstration that neutralizing NGF activity could have consequen...

متن کامل

A role for TrkA during maturation of striatal and basal forebrain cholinergic neurons in vivo.

Nerve growth factor (NGF), acting via the TrkA receptor, has been shown to regulate the survival and maturation of specific neurons of the peripheral nervous system. Furthermore, exogenous NGF has potent actions on TrkA-expressing cholinergic neurons of the basal forebrain (BFCNs) and striatum. However, initial analysis of mice lacking NGF or TrkA revealed that forebrain cholinergic neurons wer...

متن کامل

TrkA gene ablation in basal forebrain results in dysfunction of the cholinergic circuitry.

Dysfunction of basal forebrain cholinergic neurons (BFCNs) is an early pathological hallmark of Alzheimer's disease (AD). Numerous studies have indicated that nerve growth factor (NGF) supports survival and phenotypic differentiation of BFCNs. Consistent with a potential link to AD pathogenesis, TrkA, a NGF receptor, is expressed in cholinergic forebrain neuronal populations including those in ...

متن کامل

The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer’s Disease Neuropathology

Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlyin...

متن کامل

Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice.

Many molecules expressed in the CNS contribute to cognitive functions either by modulating neuronal activity or by mediating neuronal trophic support and/or connectivity. An ongoing discussion is whether signaling of nerve growth factor (NGF) through its high-affinity receptor TrkA contributes to attention behavior and/or learning and memory, based on its expression in relevant regions of the C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2013